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CONSEQUENCES OF A NON-INTEG~BLE PERTURBATION OF THE INTEGRABLE CONST~INTS: 
FrfODEL PROBLEMS OF LOW DI~~NSIONALITY* 

YA.V. TATARINOV 

Mechanical systems with kinematic constraints containing a small parameter 
axe considered. It is assumed that when the value of the parameter is 
zero, the constraints of such a system become integrable, i.e., a family 
of holonomic systems is obtained depending on several arbitrary integration 
constants. Then the methods of perturbation theory can be used to 
represent, to a first approximation , the motion of the system with non- 
zero parameter values, as a combination of the motion of a slightly 
modified holonomfc system with slowly varying previous constants (a 
transgression). 

At present, two basic theories exist of the theory of motion of systems with integrable 
constraints, and both theories have received a validation which took into account the possible 
physical nature of these constraints (in the case when they are linear and homogeneous with 
respect to the velocity, and independent of time). 

The classical theory (CT) /l-3/: a single idea of Caratheodory was developed in /4/ and 
refined by Pufayev in /5/, and the author showedin/6/ that the CT systems can be regarded as 
the limit certain holonomic systems in which dissipative forces of a special type exist (such 
as strong viscous friction in the region of contact between two bodies). The prospects of 
studying the transgression within the wide framework of this approach are well illustrated by 
the following class of problems, namely by that of a body rolling along a fixed surface, with 
a spherical surface of contact of small radius. If the radius tends to zero, then in the limit 
a problem of the rotation of a rigid body with a fixed point is obtained. 

The variationally axiomatic (called tn /7/ the vaxonomic) theory (VT): the motions are 
by definition the extrema ofthe~actfon functional from amongst the curves satisfying the 
constraints (the forces here are assumed to be potential). Hertz in /I/ called such extrema, 
while studying motion without active forces , the geodesic (nowadays the term has a different 
meaning and its wide interpretation refers to the theory of connectivities), and did not see 
any physical meaning in them. 

It was, however, shown in /7/ that VT systems are obtained from holonomic systems also 
by a passage to the limit, but a passage of a different kind, by a change in the metric (not 
unlike a strongly elliptic tensor of attached masses in the case of a plate in an ideal fluid). 
It is also possible to combine the CT and VT IS/. 

The present paper deals with a group of model problems with constraints of the Chaplygin 
sledge-type, where both theories can be used. By describing the transgression we can compare 
the effects of the CT and VT on the general basis of an unperturbed family of Hamiltonian 
system. 

1. The equations of motion in Lagrangian form. The difference between the CT and 
VT systems can be clearly observed in almost Chaplygin-type systems, Let the equations of 
constraints 

5 i = fs (xl*, . . -, cm+, Xl, . . ., ah, t), s = m + 1, . . ., z (1.1) 

be given, and the kinetic energy T of the system be independent of &X+11'. * ., Z”, (although the 
potential energy V may be dependent). We denote by T* the result of substituting expressions 
(1.1) into T, and write the equations 

To close the system, we must add to (1.1) and (1.2) another n - m equations. These 
equations will be 

(1.3) &=&CT); &.*=--, p‘(1,)=0 WT) 
8 I 
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(When the initial value of Ps shown for VT is chosen, the solution s(t), to6;I t< t, will 
represent a strong extremal of the action functional JLdt in the sense that its left-hand 

end does not remain fixed during the variation, but is displacedtogetherwiththeconstraints). 
Generalization to systems of general form is simple. 

If the constraint equations depend on the parameter a andcanbe integrated when a = 0, 
then we can assume without loss of generality that the equations (1.1) are written in the 
form 

Z$' = efs (Z1', . . ., x;, 21;. . ., Gn, t, E) (1.4) 

When e=O, we obtain a family of holonomic systems depending on the constants x8. When 
s#O, we must replace fJ in (1.2) by .sfs; and this gives the transgression equations. 

The proposed approach is aimed at bringing closer together the qualitative theories of 
motion of holonomic and non-holonomic systems. It is clear that there is little chance of 
solving the transgression equations directly, and to study the solution we shall have to use 
asymptotic methods, and before anything else, the averaging method. But this will be possible 
only when we obtain, at a= 0, a family of integrable Hamiltonian systems (integrable in the 
sense that there is a sufficient number of integrals in the involution) in which we can use 
the "action-angle" variables. In the cases when the right-hand sides of the equations of 
motion and their first derivatives are bounded, the averaged system can be regarded as one 
adequately reflecting the real mechanical effects of the transgression, using the fact that 
most solutions of the averaged system are near to the solutions of the initial system over 
extremely long time periods (see e.g. the results of Bogolyubov and Bes'yes /9/, and Anosov 
and Neishtadt /lo/). 

2. An almost holonomic pendulum. A weightless plate moves in the Oxy plane. 
The plate carries two blades forming the letter T, and the transverse element moves slowly 
along itself; a point mass M is attached to the plate along the line of the longitudinal blade. 
Thus the coordinates of the instantaneous centre of velocities C of the plate in the M%n 
coordinate system attached to the plate, % = &t $- Eo, n = r> 0. Assuming that the force F =: 

-Mge, acts on the point M we obtain, when e = 0, a normal pendulum. 
If c(S(t), q (t)) is an arbitrary point moving relative to the body according to a known 

law, then we can use, as the coordinates describing the position of the body, the coordinates 

r, Y of this point in the fixed coordinate system , and the angle cp or rotation of the body. 
Using such coordinates constructed for the point (et+ &,,r) (i.e. r and y are now the co- 
ordinates of the centre of velocities of the body), we obtain the following expression for 
the constraint equation and kinetic energy of the body: 

dx/dE = cos (p, dyldE = sin cp, % = Et + E,, 

2T* = M (52 + q*) ‘p-2 
(2.1) 

Since the potential energy 

JJ = Mg (y - r cos ‘p - E sin cp) 

Eqs.(l.2) become (we shall first assume that the dimensionally independent parameters M ==B = 
r = 1) 

(1 + %2)(p" + 2a%m' + sin ‘p - 5 cos cp = e b-b sin cp - pu co9 ‘p) 

Knowing the Cartesian coordinates of the centre of mass 

t - % coscp + sin cp, y - % sin rp - co9 tp 

(2.2) 

we can easily see that in the CT the identities (1.3) , taking the constraints into account, 
are 

px = 0 + (E sin q, + cos cp)cp', pU = 0 + (-5 cos cp + sin cp)cp' 

while in VT (1.3) can be trivially integrated, and this yields 

pr = 0, pu = -t 

After substituting into (2.2) we find that the transgression equations in the problem 
consist of (2.1) and 

(1 -I- %2)(p" + eN%cp' -I- sin 'p -N% cos 'p = 0 (2.3) 

and N = 1 for CT, and N = 2 for VT. We shall show, for comparison, that in the case when 
the pendulum is suspended fromthepoint C(%,1) non-stationary with respect to the body only 
(i.e. i = y' = 0) , the equations of motion are 

(1 + %Q7" + 2a%q' + sin 'p - % cos 'p = 0 

Here and henceforth terms of the order of E" are neglected without any special discussion. 
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of variable 

cp = arctg N% + 11, 

(1 + %2)$*' + EN%*' + 1/l + (N%)2 sin* = 0 

(2.4) 

(2.5) 

From this it follows that the unperturbed system (e = 0) can be regarded as a pendulum 
of variable length (the point of suspension moves along Mq) 

l (E) = (1 + %')(I + (NE)')-"* (2.8) 
In addition to %,x, y, the specific energy (per unit length) of the unperturbed system 

h = l/,1 (%)Q'" + (1 - cos Ip) (2.7) 

is also a slow variable (h = 0 in the state of equilibrium). 
By virtue of (2.5) we have 

dh 
-= 
dt - &(I + ~)@-(I -COST)) 

(the variable % plays the part of a slow variable), and the remaining equations are obtained 
from (2.1) by m&ing the substitution (2.4). 

Let us average the equations for x’, y', h' over the period of the unperturbed motion 
/9, lO/ in the oscillatory mode. In the system with energy (2.7), 

<sin $> = 0, <cos $> = f (h) = 2E (1/h/2)/K (p’m) - 1 

where E, K are complete elliptic integrals. Therefore the averaged transgression equations 
are 

t&-+1 + +$++f(h)-1) 

5’ = v& f(Q Y’=&qTf@) 

The function E(k)/K(k) decreases monotonically as k= IO,*) increases, from 1 to 0. Its 
derivative increases at the same time without limit, but not faster than k (1 - kz)-‘:2. mere- 
fore, when h= [0,2) increases, the function f(h) varies from +1 to -& but its derivative is 
unbounded, its estimation given by the inequality If’(h)1 <.!i%(z - h)-“‘2. tie solutions (2.8) are 
not uniformly close to the exact solutions. However, by virtue of the averaged system h'<o 
and from the estimates given in Sect.3, it follows that the error of the averaging method 
increases, depending on the initial value (over a constant time interval of the order of lie), 
in accordance with the law exp(2 - ho)-“‘. 

Let us expand f in a Taylor series: f (h) = 1 - h(1 f h/16)/2 f 0 (h3). The formula can be 
obtained using the well-known expansions of E,K, or by direct computation of ~JJ) by expanding 
V in a Taylor series as in the proof of the Lindschtedt formula /ll/. 

When the oscillations are small, h-0 and 

t = A’-’ Arsh NE, y = N-If/1 + (NE)a; y = N-1 ch Nz (2.9) 

so that the centre of velocities is displaced along a catenary. 
In the case of low energy (ha= 0) oscillation we have 

Ir = h, [I (E)]-‘IN (2.10) 

and here the centre of velocities is displaced more slowly. The investigation can be continued 
along similar lines, since the variables in the equation for h can be separated. 

Let s be the natural parameter of the curve x(%),y(%), and 8 the angle between the 
tangent and the Ox axis; p is the radius of curvature. Then ds/d% = If(h)1 and 

8 = arc& Nf, p = N-' (1 + (IV%)") If (h)~ (2.11) 

Since h' <O, I' <O, P, increases all the time provided that f(h,)> 0. 
It must be stressed that the brevity of the answer in the case of VT is largely governed 

by the choice of initial conditions for Pm Pull which removed the multivalued dependence of 
the solutions on the initial conditions characteristic for CT /7/. 

Bearing this in mind, we can nevertheless conclude that the CT and VT effects in the 
almost holonomic pendulum are complex. The line of suspension of the pendulum rotates (by 
an angle arctg NE, just as in the state of rest), the centre of oscillations is displaced 
non-trivially in the perpendicular direction , and the energy of oscillation, generally 
speaking, decreases. 

3. Some averaging estimates. Let 
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represent the usual separation of a mean value of .the vector or scalar function 5(,2n- 
periodic in (p, dependent also on the variables @ . We shall also define the vector x' or 
the matrix Bxla@. Let 1. 1 be the modulus of a scalar , norm of a vector, or the correspond- 
ing norm of a matrix. 

Let us consider the following three systems of differential equations: 

-$=eF(Q,cp), $=o(Q)+s~(%P) (3.1) 

dt3 
7 =eF,(@)+ e'R(@, kc), z = CO(@) + Efo(@) + E’r(% 8, 8) (3.2) 

+=eF,(Y), ~=o(Y)+sf,(Y) (3.3) 

Let the first system be defined in the domain D {C&, . ...&) x ,S{cp mod 2s). The third 
system is obtained from it by averaging over cp (such averaging, which also encompasses the 
equation for the rapid variable, is interchangeable with any time changes of the form ds = K 

P9w. System (3.3) can be obtained in two steps: first we use the mapping L, 

@ = cf, + CA P, cp), 0 = ‘p + I.% (Q, cp) (3.4) 

to transform system (3.1) and (3.21, and we then reject terms of the order of e'. 
We shall seek A, h with zero means (then the mapping L, will not, in the mean, displace 

or rotate the layers Q = const). Writing 

we obtain (a , can be arbitrary) 

e*i? (0, 8, E) = --E (F, (@ + en) - F, (@)) + e2 (A’F - (F,lo)f) (3.6) 

System (3.2) is defined, generally speaking, in a narrower domain (depending on e and 
such that the mapping L, is invertible and does not take the object outside the limits of 
D x a). 

We shall investigate the following solutions of the systems introduced: Q, (t), (PB 0); 
Y (et), ge (t); 8, (t), I& (t), and here we have 

Q'e (0) = Y (0) = A, Ye (0) = $8 (0) = a 

6, (0) = B, = A + Eh (A, a), Be (0) = Is, = a + Eh (A, a) 

Let us assumed that the trajectory {Y(Et), O<et,<T} lies in D together with its 6- 
neighbourhood (which will be denoted by Y6) and let max x denote the maximum value of the 
modulus or norm x in this neighbourhood. 

From the usual theorems on estimates we have 

I@,=YI<IB,-_ Iexp(emaxF,'.t)+ 
(mar Rlmas F,')(exp (E max F,‘.t) - 1) 

provided that system (3.2) is defined in Y'J and as long as e,(t)~Yb. By virtue of (3.4) we 
have 

1 6, - I, I < E max A 

as long as Q,,EY@, and B.-A is also estimated accurately. As a result we have 

) Q -Y ) <E [m (exp eDt i- 1)-t D-I max R (expsDt - I)1 

as long as @,, 8,~Yb. Here it was assumed that 

max F,’ < D 

and the estimate max A< m follows from the requirement that 

max (Fe/o),< m/n 

(3.7) 

(3.8) 
We have, by virtue of (3.6) (irrespective of h) 
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max R < Dm + max A’ max F + (m/n) maxf 

but this inequality will already hold in the region L, [Y*l n yb. In order to arrive at this 
region, we shall confine ourselves to the (6 - em)-neighbourhood of Y(et). 

Let us write, together with (3.7) and (3.8): 
max (F,lw)’ < kmlsc, max F Q M, max f < pM (3.9) 

c = (k’ + p/n)M 

This yields 

IQ-Y 1 <em [Z&D + CD-~ (eD -I)] (3.10) 

as long as 8, ~Yb-em: &E Yb, and under the assumption that the mapping LE is one-to-one. 
The validity of the latter can be guaranteed by making the neighbourhood a little smaller. 

The simplest way of obtaining the required estimates is to put LEO. We note that if the 
point QD, E +sm, then the mapping L, is one-to-one in its cm-neighbourhood Uum(QI), if 
em < i:k. Indeed, from 

Q,lf d (Q,. cp) = Q,+ eA (Q,, cp! 

it follows that 

Let now QJ,Q,~'48-aem. If ) UQ- @,,I<2me, then Q, c Ume(Qo), Q.E @-me and therefore 

e,feS. when IQ, - Q,,I>Zms, We obtain the same result simply from IAl<me. Thus the 
mapping L, is one-to-one on ylb-am and L,(~+"E]~~yme. Therefore, if the estimate (3 .lO) 
holds' for t= 0, the condition Q, E Yb-ame will not be violated as long as the right-hand side 
of (3.10) remains smaller than 6-2qe and the condition (3.10) holds during all this time. 

We can now assert that for 0 <et< T we will have 

1 % - Y 1 < em (2 + cet)@’ (3.11) 

as long as the right-hand side is less than 6 - 2me. In order to increase the clarity, the 
estimate (3.10) was slightly relaxed by introducing the inequality 

(eeDt - 1)/D < eteeDt (t > 0) 

Therefore we have, in the same time interval, 

(3.12) 

when e <e. = 6/(C + 2m). 

I % -Y I <eC, C = m (2 + cT)eDT (3.13) 

In order to obtainsystem (3.3) in its entirety, we take together with (3.51, 

h=-(f&[f*-o’A]dq)* 
; 

If o' #O,then h will depend essentially on A, and adding to A some function AO(@) 
we can, without changing r,(e), add to f,,(8) any function g(8). Finally, in this case the 
estimates yield a finite divergence of 8, and II, over time periods of the order of l/e. 
The only possibility of obtaining estimates of the order of e involves passing to a new time 

ds = o-‘dt and not returing to the old time. 
For this reason we shall simply assume that o = const; and now Mach< no-'max f.. 
Let us ensure that L, is one-to-one when h= 0. To do this we shall impose the demands 

already derived above fbr L, with h= 0. Then we can write 

Q = 8 + eK(0,cp, e) 

and substitute this into h. It now remains to ensure that the function rp,e with parameter 
0: is monotonic 

e = q + eh(8 + eK P, 'p? E). VP) 
i.e. to require that 

&[ max f* + e max f*‘. ek <I 1 
The further estimates are analogous and the result is equivalent to (3.13). 
In the case when o = con&, f= 0, estimates of the form (3.12) can be derived from the 

results of Bes'yes (given in /9/j dealing with periodic systenls of standard type. In the 
notation used here, it gives 

1 Q, - '4 (< e.4no-'M(1 + eAt)eeat (3.14) 

where A= maxF'. By virtue of the inequalities of the form \xoI<lx[, Ix,162 1x1, we can 
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conclude that D <A, ml~~<2Mio, kmln<2A1o,and therefore the right-hand 
wise better than (3.14): 

2m< 4nMto, mc= mhM< 2nAMto<4nAMio, eeDi < eFht 

although it is obtained by relaxing (3.12). 

side of (3 .ll) is term- 

4. The Chaplygin sledge (skate). Let a rigid body move along the Ozy plane. Its 
centre of mass S has coordinates x, y in fixed axes. A sharp blade is attached to the body. 
Its coordinates in the moving SEq axes are r, d and it is directed along the S% axis. 
bet cp be the angle between Ox and SS, m the mass of the body and p its central radius 
of inertia, and let elastic forces with potential ‘l,k (x8 + y2) act on the body. The kinetic 
energy and constraint equations have the form 

T = ll,m (z’~ + y’“) + 111mpa~‘2, -x-sin 'p + y' cos 'p + rp' = 0 

Let us assume that the dimensionally independent parameters m = p = k = I, and after 
the change of variables (%,n are components of the vector OS in the Sfq system) 

we will have 
x = 5 cos cp - n sin (p, y = % sin cp + n cos cp 

cp' = PI', P (E) = -(r + E)-', p' = P%', 1 + p% = -pr 

.=* = E'2 + r1.2 + 2 (%q' - q5')pq' + (1 + E" +.qypag*2 - 
E" - qa 

while the relations (1.2) will become 

(4.1) 

p=pK= %q’ - 11%’ + (1 + E2 + $)pTl (CT) , p = pB = const (VT). (4.2) 

Starting from (4.1) and following formulas (1.1) directly, leads to tedious manipulations. 
If we introduce the variables 

pt = E’ - VP’? Pq = 9’ + %cp’ 

then the equations of motion will be reduced to an interesting form, which can allow of 
generalization to the whole class of Chaplygin systems: 

5' = Pg - rlP&, q’ = pq + %p&, ‘p’ = -p,lr 

Pe’ + 5 - pq2/r = p*q’ (p - pKVr 

Pq’ + @PKldt + q + p&/r = --IL’%’ (p - pK)lr 

(4.3) 

(4.4) 

Here p = pK or pB, and pK participates without fail. It remains to solve the last 
equation for pE; p,, (they also appear in @pKldt). 

Let us introduce the small parameter E =p/r. When e-to, the blade moves away from S, 
or the distribution of mass tends to a point distribution. The choice of p = 1 means, in 
fact, a changatodimensionless variables. In the limit, when e = 0, we obtain q" = 0, i.e. 
the constraint beccmes integrable and we arrive at translational oscillations of the body. 
For small e, Eqs.(4.3), (4.4) take the form cp' = --ep, (the constraint) and 

f' = PE - ErlPrlr 9’ = Pq -+ &%pq 

PE’ = -% - EPll*, p*l’ = -_rl + ep&pp, 

and in the limit (4.4) has the same form in the CT and VT (in the latter case it does not 
depend on the choice of initial conditions). 

It is easy to show (e.g. by Bogolyubov reduction to standard form, followed by averaging) 
that there is no transgression to a first approximation. The main effect in the second 
approximation (the corresponding equations are not given here) will be the correction to the 
frequency of oscillations in q, while the oscillation frequency in % will remain unchanged 
(in the first case we,have oscillations across the direction of the blade, and in the second 
case along the direction of the blade). In the CT the exact system (4.41, (4.3) is reduced 
to a quasilinear form and can be studied using the appropriate mthods. 

5. A plate sliding on a blade. We shall demonstrate the possibility of represent- 
ing a non-integrable constraint in the form of a perturbation in an integrable constraint, 
by artificial introduction of a small parameter in such a manner that a limit holonomic 
system does not exist. 

A rigid body moves along a stationary Oyz plane. We denote the coordinates of its 
centre of mass by Y? ;z and its angle of rotation by cp. We assume that a stationary blade 
directed along the Oy axis lies at the origin of coordinates. The the velocity of the body 
above it should be directed along the blade, ar@ this yields the following constraint: 

2' = ycp' (5.1) 



This represents a well-known example of an analytically simplest non-integrable 
The kinetic energy of the body is 
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constraint. 

where m = 1, 
the potential 

Then the 

T = I/* (y-2 + 2’“) + vzp*‘p*a 

p is the mass of the body and central radius of inertia. We shall assume that 
of the forces is V(cp, y,z). Let us make the following change of variables: 

'p = a + 85, e = l/p (5.2) 

equations of motion (the transformed relation (5.1) is the first) 

2' = EYX', y" - e2yx.2 + l3Vl'iay = --EP,X' 

(1 + 9y2)x" + 2.9yy'X + &aviacp + E8vlaz.y = ep,y' 

PI = Z' = &yx' (CT),pz' = --dvidz (VT) 

will have a form suitable for use with the theory developed here (we must substitute the ex- 
pression (5.2) into eaVl8cp ). When E = 0, and we obtain formally a system in the -T, y 
plane: a point of unit mass moves in the field of potential W(y) = V(cc, y,z,). 

The integrals of motion: the total energy 

H = ‘i, ((1 + ~~y~)x'~ + y?) + V 

is always conserved. When Niacp = 0, the VT system has the integral 

(1 + &2Y2)X' --Epzy = k 

and the CT system, when aVl@ z 0 and the potential V(y,z) is axisymmetric, has a similar 
integral (of the momentum relative to the origin of coordinates) 

(1 + e2y2)x' - ~zy' = k 

If V = V,(y) + Va(x,z), then the variables can be separated in the classical system and 
the energy integral will decompose into 'two integrals: 

'i, (1 + ~~y~)x'~ + V, (x, z) = K 

'/zY'2 + v, (Y) = h 

Let us consider inertial motion with initial conditions 

'Pa' = EU, yO' = ", IO' = 0, 'Do = y, = z0 = 0 

From the integrals of motion we find that in the case of CT 

y’ = “, 2’ = II (1 + eay’f’:, 2’ = my (1 + Eaya)+ 

y = vt, z = u (ev)-’ Arsh ey, z = u (eu)-'(J1 + e*yS - 1) 

When VT is used, we have pz’= 0, and we can therefore assume that when pz= 0: 

y’ = I//v*++!%, z.=z Z.=euy 
1 +e*y2 ’ I + s’u’ 

The effects of the CT and VT are identical apart from terms of the order of ea. The loss 
of accuracy caused by neglecting terms of order e' is readily apparent. A qualitative 
description in this case is simple. 

6. Conclusion. We know that stationary non-integrable constraints are possible only 
in the case when the number of defining coordinates is not less than three. Above we have 
considered systems for which this minimum was attained. When the degrees of freedom are in- 
sufficient, the most unavoidable deviations seem to appear in the CT and VT effects. In the 
first-order approximation the quantitative (but not qualitative) deviations appeared in the 
case of non-stationary constraints , while in the case of stationary constraints the deviations 
should obviously only be expected in the higher-order approximations. 

It can be shown that in weakly non-holonomic Chaplygin systems with linear stationary 
constraints, the secular VT and CT effects will not appear in any approximation whatsoever. 
Indeed, the equations of motion with constrains of the type (1.4) are 

In the CT model pa = X%3x, and the right-hand sides obtained are quadratic with respect 
to the velocities. A reversible system appears for which Moser's theorem /12/ on conserving 
the tori in conditionally periodic motions holds (assuming non-degeneracy when e =O). The 
VT model in which pI = const yields, simply , for all initial conditions, a Hamiltonian 
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perturbation of the gyroscopic-force type. 

The author thanks V.V. Rumyantsev, A.V. Karapetyan, V.V. Kozlov, A.I. Neishtadt and 
A.S. Sumbstov for valuable suggestions, and V.F. Zhuravlev for useful comments. 

REFERENCES 

1. HERTZ H., Die Prinziepien der Mechanik in neuem Zusammenhange dargestellt: Ges. Werke. B. 3 
Leipzig: Barth, 1894. 

2. APPEL' P., Theoretical Mechanics, 2, Moscow, Fizmatgiz, 1960. 
3. SYNGE J.L., Tensor Methods in Dynamics, /Russian translation/, Moscow, Gostekhizdat, 1947. 
4. CARATHgODORY C., Der Schlitten, Z. angew. Math. und Mech. 13, 2, 1933. 
5. NEIMARK YU.1. and FUFAYEV N.A., Dynamics of Non-holonomic Systems. Moscow, Nauka, 1967. 
6. KARAPETYAN A.V., On realizing non-holonomic constraints by forces of viscous friction and 

stability of Celtic stones. PMM, 45, 1, 1981. 
7. KOZLOV V.V., Dynamics of systems with non-integrable constraints. III Vestn. MGU, Ser.1, 

Matematika, mekhanika, 3, 1983. 
8. KOZLOV V.V., Realization of non-integrable constraints in classical mechanics.Dokl. A .ad. 

Nauk SSSR, 272, 3, 1983. 
9. ZHURAVLEV V.F. and KLIMOV D.M., The Solid State Wave Gyroscope. Moscow, Nauka, 1985. 
10. ARNOL'D V.I., Additional Chapters in the Theory of Ordinary Differential Equations. 

Moscow, Nauka, 1978. 
11. TATARINOV YA.V., Lectures on Classical Dynamics, Moscow, Izd-vo MGU, 1984. 
12. MOZER YU., On expanding conditionally periodic motions in convergent power series. Uspekhi 

Mat. Nauk, 24, 2, 1969. 

Translated by L.K. 

PMM U.S.S.R.,Vol.51,No.5,pp.586-592,1987 
Printed in Great Britain 
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Hamiltonian systems with two degrees of freedom are studied. One degree 
of freedom corresponds to rapid motion, and the other to slow motion. 

ON CROSSING A SEPARATRIX IN 
OF FREEDOM* 

The phase point intersects the separatrix of the rapid motion. Formulas 
are obtained for the change in the adiabatic invariant during this cross- 
ing. An example is solved, dealing with the change in the adiabatic 
invariant of an asteroid near the 3-l resonance with Jupiter. 

1. Formulation of the problem. A number of problems of the theory of oscillations 
lead to Hamiltonian systems with a Hamiltonian of the form II = H(p,q, y,x), where q, P,-~x are 
the coordinates, p, y the associated moments, e> 0 is a small parameter and HE Cm. The 
variables p, q will be called rapid, and y,x slow. The Hamiltonian system for P, q with 

(y, x) = const will be called rapid or unperturbed. The 
Hamiltonian of the type shown characterizes, e.g. the motion of 
an asteroid in the bounded three-body problem near a resonance. 

Below we assume that the phase plane of the rapid system 

@@ ...,,, 
contains the separatrices shown in Fig.1 for all values of the 
slow variables under cosideration. When the slow variables are 

the phase point intersects the separatrix. The motion 
away from the sepatrix is characterized by a quantity which is 

Fig.1 preserved with a high degree of accuracy, namely the adiabatic 
invariant (AI) /l/. The neighbourhood of the sepratrices 

*Prikl.Matem.Mekhan.,51,5,750-757,1987 


